To make matters even more complex, to get a complete picture, one would have to purchase sell-out data from several sources, since some have exclusivity rights with certain retailers, with some retailers having proprietary databases. And if that weren’t enough, some sell-out providers offer less granular packages, but cover whole categories, or offer insights into consumer profiles.
It’s worth pointing out that this minefield is avoided if the supply chain is vertically integrated, where the product is sold in ‘owned stores’ with complete access to the POS system.
After getting the data, then what?
There are real, non-negligible hurdles to properly exploiting sell-out data after purchasing. This starts with having the wherewithal to properly store, index, and manipulate the data. This is less of a problem for large organizations that have invested in data science resources. The next issue is that the data comes in very ‘messy’ and needs to be cleaned. Often, the EAN codes (the 13-digit codes embedded in the barcode) are mistaken or do not reflect product substitutions that occur with ever-increasing frequency.
A last wrinkle is that the data usually arrives in weekly tranches. Many manufacturers work in months rather than weeks, so a conversion has to be done. Just to add a final layer, there is no universal standard for which week is the first week of the year, so that has to be sorted out as well.
Putting the data to use
Only after the sell-out data has been purchased, compiled, cleaned, and converted can demand planners set about the task of using it to refine forward demand forecasts. Yet it can be maddeningly difficult to accomplish this in any coherent way.
Demand forecasts at a manufacturer are the first step in the sales and operations cycle (S&OP). Properly done, the demand forecast will reflect the forward business activity and drive actions in the rest of the supply chain, including production. The implication is that the demand forecast must forcibly project the sell-in volumes that the manufacturer expects to sell to retailers. This by definition sets the financial plan and defines the demand against which the supply must be balanced and matched.